We construct a universally Bayes consistent learning rule that satisfies differential privacy (DP). We first handle the setting of binary classification and then extend our rule to the more general setting of density estimation (with respect to the total variation metric). The existence of a universally consistent DP learner reveals a stark difference with the distribution-free PAC model. Indeed, in the latter DP learning is extremely limited: even one-dimensional linear classifiers are not privately learnable in this stringent model. Our result thus demonstrates that by allowing the learning rate to depend on the target distribution, one can circumvent the above-mentioned impossibility result and in fact, learn \emph{arbitrary} distributions by a single DP algorithm. As an application, we prove that any VC class can be privately learned in a semi-supervised setting with a near-optimal \emph{labeled} sample complexity of $\tilde{O}(d/\varepsilon)$ labeled examples (and with an unlabeled sample complexity that can depend on the target distribution).
translated by 谷歌翻译
在神经元网络中,使用本地信息单独更新,允许完全分散的学习。相反,人工神经网络(ANN)中的元件通常使用中央处理器同时更新。在这里,我们调查最近引入的分散,物理驱动的学习网络中异步学习的可行性和影响。我们表明,在理想化模拟中,Desynchization Learing Processe不会降低各种任务的性能。在实验中,Des同步实际上通过允许系统更好地探索解决方案的离散状态空间来实现性能。我们在随机梯度下降中的异步和迷你批处理之间绘制了类比,并表明它们对学习过程具有类似的影响。 des同步学习过程将物理驱动的学习网络建立为真正完全分布式的学习机器,在部署中提高更好的性能和可扩展性。
translated by 谷歌翻译
在过去十年中,已经开发出新的深度学习(DL)算法,工作负载和硬件来解决各种问题。尽管工作量和硬件生态系统的进步,DL系统的编程方法是停滞不前的。 DL工作负载从DL库中的高度优化,特定于平台和不灵活的内核,或者在新颖的操作员的情况下,通过具有强大性能的DL框架基元建立参考实现。这项工作介绍了Tensor加工基元(TPP),一个编程抽象,用于高效的DL工作负载的高效,便携式实现。 TPPS定义了一组紧凑而多才多艺的2D张镜操作员(或虚拟张量ISA),随后可以用作构建块,以在高维张量上构建复杂的运算符。 TPP规范是平台 - 不可行的,因此通过TPPS表示的代码是便携式的,而TPP实现是高度优化的,并且特定于平台。我们展示了我们使用独立内核和端到端DL&HPC工作负载完全通过TPPS表达的方法的效力和生存性,这在多个平台上优于最先进的实现。
translated by 谷歌翻译